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1. Introduction and Motivation 

 
The prediction of mortality based on social, clinical, nutritional and behavioral features serve a 

multitude of useful social and commercial functions. Insurance companies and medical care 

administrations, for example, have an interest in understanding the mortality risks of patients in 

order to identify those in most urgent needs of medical and clinical resources as well as conserve 

limited healthcare resources by de-prioritizing those in a low risk group. Mortality predictions also 

serve key functions for governments and medical researchers interested in devising the best public 

health strategy to promote citizens’ well-being. For example, with a limited budget, what aspects 

of behavioral or nutritional health should they emphasize that best decrease citizens’ risk of dying? 

To these ends, we ask the following two questions in our project: which model would best predict 

a person’s risk of dying? How do we interpret the impact of predictors and what are the most 

important features for our model? 

 

2. Data 

 
2.1 Data Source and Data Description 

The dataset we used in this project was collected as part of the National Health And Nutrition 

Examination Survey I Epidemiologic Follow-up Study (NHEFS), which as a longitudinal study 

covering the national population initiated by the National Institute on Aging and National Center 

for Health Statistics. The goal of the NHEFS study was to investigate the relationships between 

clinical, nutritional, physical and behavioral attributes and mortality, morbidity, hospital 

utilization, and impact on risk factors. In this dataset, we investigated the relationships between 

many of the clinical, physical, nutritional, and social variables measured in the National Health 

And Nutrition Examination Survey I and subsequent mortality of the traced cohort. There were 46 

variables, including 41 predictors and 1 response variable. The response variable represented the 

time the study participant had survived after the first examination. The value for this variable was 

negative if the participant had dropped out of the study prior to completion or was still alive at 

completion. Among these 41 predictors, 3 (urine_albumin, urine_glucose, urine_hematest) were 

ordinal, 3 (race, sex, and platelets_estimate) were categorical and 35 were continuous. In order to 

use these categorical and ordinal variables in modeling, we created dummy variables for all 

categorical variables using one-hot encoding and converted descriptions of levels for all ordinal 

variables on an integer scale from 1 to 6.  

 

2.2 Data Reconciliation 

In order to confirm validity of data, we performed data reconciliation. To gauge the high-level 

representativeness and validity of participant data collected, we cross-referenced values of 

common and well-documented physiological measures (red and white blood cell counts, and 

hemoglobin and hematocrit levels) in our dataset against reference ranges (Figure 3, Table 1). 

Using reference ranges from the Mayo Clinic [1], a premier healthcare provider, we saw that values 

for all variables tracked closely the reference values for both males and females. For example, the 

red blood cell counts mostly fell between 4.2 and 5.8, as well as 3.8 and 5.25 for males and females 

in our dataset whereas the reference ranges for males and females (adults) were 4.35-5.65 and 
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3.92-5.13, respectively. Furthermore, for variables such as red blood cell count and hemoglobin 

where reference ranges were different for males and females, a similar shift in distribution of 

values was observed for these variables in our dataset. Taken together, these observations 

supported the conclusion that the cohort in our dataset was representative of the adult population 

of this country and that there were no significant validity issues regarding the data used.  

 

2.3  Missing Value Imputation 

 

Due to significant data missingness in the dataset, we conducted data imputation and variable 

selection prior to modeling and data visualizations (Figure 1). We first visualized and quantified 

the missingness of variables. Together, we saw that 15 variables were missing more than half of 

the values and 4 variables were missing more than 75% (Figure 2). Because variables missing 

more than 75% values were unlikely to carry any beneficial  predictive value and could even be 

detrimental due to highly speculative imputation, we dropped them from the dataset. For the 

remaining 11 predictors missing more than half of the values, we converted them to indicators of 

missingness (1=variable present, 0=variable missing) in order to balance the need to have more 

variables as predictors and the potential hazard from imputation of variables that did not contain 

sufficient information. Because our EDA showed that there were no significant linear relationships 

among the variables, we decided to apply kNN instead of linear regression imputation. After 

applying the minmax scaler, We applied two rounds of kNN imputation. In the first round, three 

variables with no missing values were used to impute variables with less than 5% of missing 

values. In the second round, variables with between 5% and 50% missing values rate were imputed 

based on variables with non-missing values and variables missing less than 5% that had been 

imputed in the first round.             

Fig 2. missing values ratios in each predictors with missing values    Fig 4. Distribution of the response variable      
 

3.  Exploratory Data Analysis 

 

We visualized the distribution of the response variable as well as predictors against the response 

variable to explore the possibility of utilizing linear models for prediction. However, no obvious 

linear relationships were observed between continuous predictors and the response variable 

(Figure 6). In addition, the response variable did not appear to be normally distributed (Figure 4), 

which would violate assumptions for linear models such as linear regression.  
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We also sought to explore multicollinearity in our dataset by visualizing a correlation matrix of 

continuous predictors against each other (Figure 5). We observed possible issues with 

multicollinearity as variables had modest to strong correlations amongst each other. For example, 

pulse pressure had 0.5 and 0.85 correlation coefficients with age and systolic blood pressure, 

respectively (Figure 5).  

 

We then moved on to consider any interaction effects that might be present, especially regarding 

race and gender. Looking at the effect on the response variable of platelets estimates across genders 

and of race across genders, for example, we saw that race and platelets estimates might have been 

modified by gender (Figure 8-9).  

                      

   Fig 5. Correlation Matrix of Variables  

 

Fig 8.  Distribution of response variable in different race and gender groups 
Finally, we examined the relationship between categorical variables (Gender, PE, and race) and 

the outcome variable to determine their usefulness in predicting the response variable (Figure 10-

12). We used histograms together with violin plots to compare and distributions of target variables 

within each subcategory. We could see that the distribution of y was inconsistent across subgroups. 

Therefore, it was worthwhile to incorporate categorical variables into the final prediction model. 
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Because the response variable was not distributed normally (Figure 4) and because we sought to 

answer a classification instead of regression problem, we converted the continuous response 

variable into a categorical one based on whether the participant had survived x number of years. 

Taking this approach, we would delete negative y values whose absolute values were smaller than 

the cut-off x because we had no way of knowing if participants with those values died during the 

study or dropped out. We experimented with different values for x and visualized the 

proportionality of classes (alive vs. deceased) with different thresholds values (Figure 13). We 

eventually selected a threshold of 19 because this would leave us with the most equal distribution 

of participants who survived or did not survive past that number of years since their initial 

examination (Figure 13). We then took the absolute value of the response variable and created a 

new variable alive as our outcome variable where participants would have values of 1 for that 

variable if they survived at least 19 years since the first examination and 0 if they did not.  

Fig 13.  Class Proportion under Different Cutoff 

 

After transformation of this response variable, we conducted further visualizations to analyze the 

difference in values in different predictors between alive and deceased patients using the selected 

threshold (Figure 14). Using KDE and bar plots, we noted that, not surprisingly, age and gender 

appeared to have substantial effects on participants’ mortality, with older people and males more 

likely to die in 19 years since first examination of the study. We also noted some interesting 

findings: for example, poverty, pulse pressure, systolic blood pressure, and height seemed to have 

relatively significant impact on mortality while weight, white blood cells, and serum iron appear 

to have very modest if any impact at all (Figure 14). 
 

 

4. Methods 

 

4.1 Advanced Feature Engineering and Selection 

 

4.1.1 Feature Selection 

We used two methods to conduct the feature selection. The first method was lasso regularization 

because it had the tendency of “turning off” unimportant predictors. Specifically, we removed all 

predictors that the model deemed unimportant. The second method was random forest. After fitting 

a random forest model, we calculated the feature importance for each predictor. A threshold 
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(0.007) was set to remove all predictors that had scores lower than it. Only the features that were 

kept both in the lasso process and the random forest process would be kept in our feature subset.   

 

4.1.2 PCA Transformation 

PCA has the unique ability to effectively deal with problems of multicollinearity as well as to 

reduce runtime and complexity through reducing the dimension of predictors. Therefore, in 

addition to using the original set of predictors selected only based on data missingness (original 

predictors) and the aforementioned subset of predictors selected through application of lasso 

regularization and random forest (subsetted predictors) as input data to our model, we also sought 

to consider PCA transformed original and subsetted predictors to our prediction model. To this 

end, we performed PCA transformation of these two sets of predictors. In determining the number 

of principal components needed for each set of predictors, we aimed for criteria such that 85-90% 

of variance could be explained.  

 

4.2 Modeling 

After the aforementioned process of feature engineering, we created four different datasets: 

original dataset, subset using feature selection only, dataset using PCA only, subset using both 

feature selection and PCA. We wanted to explore whether PCA could reduce model complexity 

while improving the model’s performance. We also wanted to explore whether we could use a 

subset of features to achieve similar performance as the original dataset, which could bring great 

convenience in clinical practice. 

 

First we employed K-nearest neighbors as our baseline model on the original dataset since it did 

not require normality, linearity and multicollinearity assumptions in data and was more capable of 

building complex decision boundaries automatically to offer useful predictions. Then, logistic 

regression, decision trees, random forest, adaboosting, SVM, neural network were employed on 

the original dataset to try to improve the performance. We decided to choose the two best 

performing models to further implement on the 3 other dataset. 

 

4.2.1 K-Nearest Neighbors - Baseline Model 

K-nearest neighbors (KNN) has been viewed as one of the top 10 data mining algorithms due to 

its efficiency and simplicity [2]. It is a model that performs classification by first calculating the 

distance between the observant and every training sample, then returning the mode of the k nearest 

samples’ labels. In order to select the best hyper-parameter k for our kNN model, we employed 5-

fold cross validation on our train data on a range of k values. We selected the best k value based 

on the training accuracy and validation accuracy (Figure 19). 

 
Fig 19. Training and validation accuracy in KNN model for different k values 

https://colab.research.google.com/drive/1tgKDhYdB6xzcoP0dpsFr7RhEUmEEW_df?authuser=1#scrollTo=7ebe42a4


 

 

*Note: All figures are in the Colab. We only chose some figures to be shown in the report.                                          
6 

 

4.2.2 Logistic Regression 

Logistic regression is one of the most common generalized linear regression, which is frequently 

used for binary classification. It measures the relationship between the categorical dependent 

variable and one or more independent variables by estimating probabilities using a logistic 

function, which is the cumulative distribution function of logistic distribution. 

 

 
4.2.3 Decision Trees 

Decision tree is a tree-structured model based on a series of comparisons of the values of predictors 

against threshold values. It is easy to interpret, and could build complex decision boundaries 

automatically. We tuned the number of max_depth of trees through cross-validation to find a well-

tuned single tree. 

 

4.2.4 Random Forests 

Random forest addresses the high variance issues arising from the deep depth of a single decision 

tree by combining the prediction results from multiple decision trees to reduce the variance. We 

tuned the number of trees, max_depth of each tree, and loss function in determining splits to select 

the optimal combination of hyperparameters on the average result of 5-fold cross validation. 

 

4.2.5 SVM 

Support Vector Machine takes advantage of the kernel function to project the original data points 

into a higher dimensional space or even infinite dimensional space with the RBF kernel. The linear 

decision boundary in higher dimensional setting will then become a non-linear decision boundary 

in the original dimensional space. Similarly, we employed a grid search and only varied the kernel 

function and regularization loss weight in the hinge loss.  

 

4.2.6 Neural Network 

We defined a simple dense neural network with three hidden layers and one output layer. To 

capture the non-linear trend, we added a ReLU activation function after each hidden layer. In the 

output layer, we used a sigmoid activation function to convert the raw number to probability and 

calculate the loss with binary cross-entropy functions. We trained the neural network with 100 

epochs with EarlyStopping callbacks to stop training when there was no improvement in the 

validation accuracy. We manually tuned the learning rate and batch size and selected the pair with 

the highest score on the validation set. 

 

4.3 Evaluation Metrics 

In selecting the proper metrics to evaluate the results of potential models on train and test data, we 

recognized that accuracy might potentially be problematic because of its oversimplification and 

its particular vulnerability in dealing with imbalanced data. In our case, however, because we have 

greatly mitigated the problem of class imbalances by selecting the optimal threshold in 

transformation of the response variable, we continued to consider accuracy a valid metric for 

model evaluation. In addition, we investigated common and proper metrics used by medical 
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journals especially in cases to predict mortality to expand the number of metrics to be used. We 

decided to include F1 score and AUC due to their ubiquity as metrics in scientific literature [3,4]. 

After choosing the best model, we further used SHAP to interpret the feature importance. SHAP 

value computes the marginal contribution of each feature from the baseline prediction (average) 

to its actual prediction. SHAP value can also be used to explain the global importance by simply 

averaging the SHAP values across each example; features with large mean absolute SHAP values 

are considered important. 

 

5. Results and Analysis 

5.1 Advanced Feature Engineering and Selection 

5.1.1 Feature Selection 

Using Lasso regularization, we removed 4 predictors whose coefficients shrunk to 0 - eosinophiles, 

monocytes, race2, as well as male (Figure 15). The feature importance scores from Random Forest 

were shown in Figure 16. Predictors with scores lower than the 0.007 threshold were removed. In 

total, 20 features were left in the subset. 

 

5.1.2 PCA Transformation 

Based on the proportion of total variance with different number of PCA, we chose the first five 

principal components for the original set of predictors which could explain 90% of total variance 

(Figure 17) and the first 7 principal components for the subsetted predictors which could explain 

89% of the total variance (Figure 18).  

 

5.2 Modeling 

5.2.1 Model comparison in the original dataset 

Based on the original data set, we ran all the models above, evaluated every model using the same 

metrics: accuracy, F1 score and AUC (Figure 22), and drew the ROC plot. We could see that our 

baseline model (KNN) achieved the lowest accuracy and F1 score on test data.  For our problem, 

we focused on F1 score and AUC metrics, which offered a better evaluation of model’s overall 

performances, and we could see that among all the models, random forest and neural networks 

seemed to achieve best performance on test data.  

 

.  
Table 9 & 10. Summary of all model performances on original training dataset (9) and testing dataset (10).  
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Fig 22. ROC curves of model performances on original dataset 

   

5.2.2 Model comparison between datasets 

Random Forest and Neural Network, which were the two best models on the original data, were 

utilized on the other three different datasets, and their performances were displayed in the table 

below.  

 

We found that the Random Forest model on the original dataset was the only combination that had 

F1 score higher than 0.8 and AUC score higher than 0.86. Therefore, to achieve the best prediction 

performance, medical researchers should use the full dataset, which captured more information, 

and a random forest model may be a good choice.  

 

However, all the other combinations also achieved very similar accuracy, F1 score and AUC 

scores.  We noticed that the subset dataset achieved similar performances, while reducing more 

than half of the features from the original dataset (42->20). Therefore, in real practice, clinicians 

could use the subset data to do prediction, which would largely reduce the work and difficulty 

associated with data collection.  

 

Principal component analysis largely reduced the data dimension and computational complexity, 

while achieving similar performances. The PCA after feature selection data achieved similar 

performance in both random forest and neural network models as a feature selection method, while 

it reduced the number of features from 20 to 7. The PCA after the original data performs slightly 

worse than the original data, but the number of features is reduced from 42 to 5.  Therefore,  when 

the amount of data is huge, PCA could largely reduce the computational time and fasten the 

process. 
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Table 17. Model performances comparison of different datasets 

 

5.2.3 Feature importance analysis on the best performed model and dataset 

Feature Importance from Random Forest:   

From the analysis above, we found that the random forest model on the original dataset performed 

the best. Based on this model, we drew a feature importance plot from this random forest model. 

From this plot, we could see that age was the most dominant feature in the random forest model.  

Many other features, such as systolic_blood_pressure, pulse_pressure and etc., also had important 

impacts on our response. 

  
Fig 16. Feature Importance from Random Forest 

          

SHAP Values:  

Since traditional feature importance only tells us which features are the most important on a 

global level, the SHAP values can explain the magnitude and direction of each feature on every 

single data point. SHAP values relax the linear model assumption of LIME methods and can 

examine the interaction among features. Based on the summary plot, we observed that age, 

gender, systolic blood and pulse pressure had the most significant impact on mortality. In 

particular, large age, high blood pressure and pulse pressure and male would have a high 

likelihood to die in the next 19 years, which makes sense. If someone is quite old, he or she is 

less likely to survive the next 19 years.  Blood pressure and pulse pressure are two elementary 

measurements of people’s  health, which may directly reflect people’s likelihood of living or 
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death. The difference between genders matches some previous research that women tend to live 

longer than men when we hold other conditions constant. 

Fig 29 & 30. Summary plots of SHAP value 
Interaction Plots: 

In order to select the most important four features from the SHAP value plot,  we constructed the 

interaction plots among them.  Positive SHAP values showed contribution to predicting to live at 

least 19 years. Negative SHAP values showed contribution to predicting the death within 19 

years.  

      

         
Fig 31-34. Dependence plots of SHAP value for age, white blood cells, pulse pressure and female 
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From these plots, we could find some interesting patterns. As age increases,  its contribution to 

predicting the death within 19 years increases, which makes sense. As pulse pressure increases,  

its contribution to predicting the death within 19 years increases as well. When whilte blood cells 

levels were small, the contribution of male’s white blood cell to the probability that he lives at 

least 19 years is bigger than that of female’s. However, when whilte blood cell levels were 

higher, the contribution of male’s white blood cells to predicting death within 19 years was 

greater than that of female’s. Compared to makes, females generally had higher contributions to 

the prediction that a person can live more than 19 years. As age increases, whether the person 

was female or not became more important in predicting whether he would die within 19 years. 

As age increased, females seemed to have a higher possibility of living more than 19 years, while 

males seemed to have a higher probability of death within 19 years.  

 

6. Discussions and Conclusions 

 

In conclusion, a random forest model based on the original data set (after data pre-processing) 

would best predict a person’s risk of dying. Among all the predictors, age, whilte blood cells, pulse 

pressure and gender seemed to be the most important four features with some interaction effects 

between them. However, recognizing that a goal of this project was to create a prediction tool of 

mortality that would be useful to clinicians as well as medical researchers and personnel, we sought 

to limit the number of predictors used in the model and include only those most relevant and 

significant. We did this with the understanding that in medical research and clinical settings it is 

often impractical or prohibitively expensive to collect too many categories of features from 

patients. Limiting the number of predictors including clinical measures (e.g. urine PH) used in the 

model would also be helpful to ensure the consistency in data because by reducing burden in data 

collection (for example through reducing the number of visits required of participants for the 

study) we could reduce dropout rate of participants, and reduce errors in data due to complicated 

study administration. Thus, in reality, for the convenience of clinicians to collect data, we could 

use a subset of 20 features as described above to perform the prediction analysis while achieving 

similar performance. PCA was also a good method in practice for a large dataset as it greatly 

reduced data dimension and computational time while achieving similar results.   

 

However, there are limitations regarding our approach, analysis, and/or data used. To begin with, 

due to significant missingness in many of our predictors, we lost a significant amount of 

information as we were forced to eliminate some predictors from our analysis or convert them to 

variables signaling only their missingness. In addition, because we converted our response variable 

from continuous to categorical, we also could have lost information by using a categorical variable 

for evaluation of mortality risk; after all, two participants dying 3 years and 15 years since the first 

examination of the study were categorized the same in our approach although it would be useful 

for us to learn the reasons explaining this difference. Consequently, future studies could seek to 

institute better experiment administration to mitigate issues regarding data missing. Since the data 

we used represented only levels of predictors, it could also be helpful to study the levels of these 

variables at different followups to understand how the changes of predictors influence mortality 

risk. Finally, while our dataset did not have a particular focus on patients with a specific type of 

disease, it would be interesting to validate or test our models in a disease specific context. 
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